257 research outputs found

    2D and 3D surface image processing algorithms and their applications

    Get PDF
    This doctoral dissertation work aims to develop algorithms for 2D image segmentation application of solar filament disappearance detection, 3D mesh simplification, and 3D image warping in pre-surgery simulation. Filament area detection in solar images is an image segmentation problem. A thresholding and region growing combined method is proposed and applied in this application. Based on the filament area detection results, filament disappearances are reported in real time. The solar images in 1999 are processed with this proposed system and three statistical results of filaments are presented. 3D images can be obtained by passive and active range sensing. An image registration process finds the transformation between each pair of range views. To model an object, a common reference frame in which all views can be transformed must be defined. After the registration, the range views should be integrated into a non-redundant model. Optimization is necessary to obtain a complete 3D model. One single surface representation can better fit to the data. It may be further simplified for rendering, storing and transmitting efficiently, or the representation can be converted to some other formats. This work proposes an efficient algorithm for solving the mesh simplification problem, approximating an arbitrary mesh by a simplified mesh. The algorithm uses Root Mean Square distance error metric to decide the facet curvature. Two vertices of one edge and the surrounding vertices decide the average plane. The simplification results are excellent and the computation speed is fast. The algorithm is compared with six other major simplification algorithms. Image morphing is used for all methods that gradually and continuously deform a source image into a target image, while producing the in-between models. Image warping is a continuous deformation of a: graphical object. A morphing process is usually composed of warping and interpolation. This work develops a direct-manipulation-of-free-form-deformation-based method and application for pre-surgical planning. The developed user interface provides a friendly interactive tool in the plastic surgery. Nose augmentation surgery is presented as an example. Displacement vector and lattices resulting in different resolution are used to obtain various deformation results. During the deformation, the volume change of the model is also considered based on a simplified skin-muscle model

    Synthesis of Aminoalkyl Sclareolide Derivatives and Antifungal Activity Studies

    Get PDF
    Sclareolide was developed as an efficient C-nucleophilic reagent for an asymmetric Mannich addition reaction with a series of N-tert-butylsulfinyl aldimines. The Mannich reaction was carried out under mild conditions, affording the corresponding aminoalkyl sclareolide derivatives with up to 98% yield and 98:2:0:0 diastereoselectivity. Furthermore, the reaction could be performed on a gram scale without any reduction in yield and diastereoselectivity. Additionally, deprotection of the obtained Mannich addition products to give the target sclareolide derivatives bearing a free N-H group was demonstrated. In addition, target compounds 4–6 were subjected to an antifungal assay in vitro, which showed considerable antifungal activity against forest pathogenic fungi.Financial support from the National Natural Science Foundation of China (Nos. 21761132021 and 21606133) and IKERBASQUE, Basque Foundation for Science

    The Prospects for Immigration Amendments

    Get PDF
    Obg proteins are a family of P-loop GTPases, conserved from bacteria to human. The Obg protein in Escherichia coli (ObgE) has been implicated in many diverse cellular functions, with proposed molecular roles in two global processes, ribosome assembly and stringent response. Here, using pre-steady state fast kinetics we demonstrate that ObgE is an anti-association factor, which prevents ribosomal subunit association and downstream steps in translation by binding to the 50S subunit. ObgE is a ribosome dependent GTPase; however, upon binding to guanosine tetraphosphate (ppGpp), the global regulator of stringent response, ObgE exhibits an enhanced interaction with the 50S subunit, resulting in increased equilibrium dissociation of the 70S ribosome into subunits. Furthermore, our cryo-electron microscopy (cryo-EM) structure of the 50S? ObgE? GMPPNP complex indicates that the evolutionarily conserved N-terminal domain (NTD) of ObgE is a tRNA structural mimic, with specific interactions with peptidyl-transferase center, displaying a marked resemblance to Class I release factors. These structural data might define ObgE as a specialized translation factor related to stress responses, and provide a framework towards future elucidation of functional interplay between ObgE and ribosome-associated (p) ppGpp regulators. Together with published data, our results suggest that ObgE might act as a checkpoint in final stages of the 50S subunit assembly under normal growth conditions. And more importantly, ObgE, as a (p) ppGpp effector, might also have a regulatory role in the production of the 50S subunit and its participation in translation under certain stressed conditions. Thus, our findings might have uncovered an under-recognized mechanism of translation control by environmental cues

    REV IDENTIFICATION OF TIGHT SANDSTONE IN SULIGE GAS FIELD IN CHANGQING OILFIELD CHINA USING CT BASED DIGITAL CORE TECHNOLOGY

    Get PDF
    ABSTRACT The representative elementary volume (REV) of porous media is one essential and necessary parameter when inferring Darcy-scale flow properties from pore-scale studies. Suitable and accurate size of REV has a great influence on the geometric-topology calculation and flow simulation. Generally different types of rock can have different REVs

    Magnetic properties of Er-doped ZnO films prepared by reactive magnetron sputtering

    Get PDF
    All Zn1−x Er x O (x=0.04, 0.05, and 0.17) films deposited on glass substrates by radio-frequency reactive magnetron sputtering exhibit the mixture of ferromagnetic and paramagnetic phases at room temperature. The estimated magnetic moment per Er ion decreases with the increase of Er concentration. The temperature dependence of the magnetization indicates that there is no intermetallic ErZn buried in the films. The ferromagnetism is attributed to the Er ions substitution for Zn2+ in ZnO lattices, and it can be interpreted by the bound-magnetic-polaron model

    Optical heterodyne micro-vibration detection based on all-fiber acousto-optic superlattice modulation

    Get PDF
    We propose a configuration of optical heterodyne micro-vibration detection based on an all-fiber acousto-optic superlattic modulation structure that acts as both frequency shifter and reflector, simultaneously. The vibration information within the frequency range between 1 Hz to 150 kHz of a piezoelectric mirror (PZM) has been experimentally measured by using this all-fiber optical heterodyne detection configuration. The minimal measurable vibration amplitude and the resolution are around 0.013 nm and 10 pm in the region of tens to hundreds of kilohertz, respectively. The configuration not only has advantages of compact size, easy alignment and non-contact measurement, but also gains high accuracy, which provides a promising alternative and could be applied in the compact and portable instruments based on optical heterodyne detection

    Generation and Application of Inducible Chimeric RNA ASTN2-PAPPA(as) Knockin Mouse Model

    Get PDF
    Chimeric RNAs (chiRNAs) play many previously unrecognized roles in different diseases including cancer. They can not only be used as biomarkers for diagnosis and prognosis of various diseases but also serve as potential therapeutic targets. In order to better understand the roles of chiRNAs in pathogenesis, we inserted human sequences into mouse genome and established a knockin mouse model of the tamoxifen-inducible expression of ASTN2-PAPPA antisense chimeric RNA (A-P(as)chiRNA). Mice carrying the A-P(as)chiRNA knockin gene do not display any apparent abnormalities in growth, fertility, histological, hematopoietic, and biochemical indices. Using this model, we dissected the role of A-P(as)chiRNA in chemical carcinogen 4-nitroquinoline 1-oxide (4NQO)-induced carcinogenesis of esophageal squamous cell carcinoma (ESCC). To our knowledge, we are the first to generate a chiRNA knockin mouse model using the Cre-loxP system. The model could be used to explore the roles of chiRNA in pathogenesis and potential targeted therapies

    Multiple Frequency Bands Analysis of Large Scale Intrinsic Brain Networks and Its Application in Schizotypal Personality Disorder

    Get PDF
    The human brain is a complex system composed by several large scale intrinsic networks with distinct functions. The low frequency oscillation (LFO) signal of blood oxygen level dependent (BOLD), measured through resting-state fMRI, reflects the spontaneous neural activity of these networks. We propose to characterize these networks by applying the multiple frequency bands analysis (MFBA) to the LFO time courses (TCs) resulted from the group independent component analysis (ICA). Specifically, seven networks, including the default model network (DMN), dorsal attention network (DAN), control executive network (CEN), salience network, sensorimotor network, visual network and limbic network, are identified. After the power spectral density (PSD) analysis, the amplitude of low frequency fluctuation (ALFF) and the fractional amplitude of low frequency fluctuation (fALFF) is determined in three bands: <0.1 Hz; slow-5; and slow-4. Moreover, the MFBA method is applied to reveal the frequency-dependent alternations of fALFF for seven networks in schizotypal personality disorder (SPD). It is found that seven networks can be divided into three categories: the advanced cognitive networks, primary sensorimotor networks and limbic networks, and their fALFF successively decreases in both slow-4 and slow-5 bands. Comparing to normal control group, the fALFF of DMN, DAN and CEN in SPD tends to be higher in slow-5 band, but lower in slow-4. Higher fALFF of sensorimotor and visual networks in slow-5, higher fALFF of limbic network in both bands have been observed for SPD group. The results of ALFF are consistent with those of fALFF. The proposed MFBA method may help distinguish networks or oscillators in the human brain, reveal subtle alternations of networks through locating their dominant frequency band, and present potential to interpret the neuropathology disruptions
    • …
    corecore